
Does your bestie (or enemy) need to take COMP110?

I still have seats available in my Summer Session I sections!

This is a great opportunity to:

● Take COMP110 in a small class environment
● Focus on COMP110 without having to balance other classes
● Not have to sit on the waitlist for COMP110 in a future semester

CL29 – 🪄Magic Methods🪄
and Recursion Review

Announcements

Re: Quiz 03:

● Regrade requests will be open till 11:59pm on Wednesday!
○ Please submit a regrade request if you believe your quiz was not graded correctly according to the

rubric

Re: Quiz 04:

● Practice quiz will be available on the site today
○ Come to Tutoring to work through it with TAs today (5-7pm in SN011)!

● If you have a UAA and want to reschedule your quiz to another date, please let me
know!

(Reminder: The River Simulation exercise is due Friday at 11:59pm. Start early!)

https://comp110-25s.github.io/exercises/ex04_river_sim.html

Warmup: Try printing a Point or Line object from last lecture!
What happens?class Point:

 x: float
 y: float

 def __init__(self, x: float, y: float):
 self.x = x
 self.y = y

 def dist_from_origin(self) -> float:
 return (self.x**2 + self.y**2) ** 0.5

 def translate_x(self, dx: float) -> None:
 self.x += dx

 def translate_y(self, dy: float) -> None:
 self.y += dy

pt: Point = Point(2.0, 1.0)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Warmup: Try printing a Point or Line object from last lecture!
What happens?class Point:

 x: float
 y: float

 def __init__(self, x: float, y: float):
 self.x = x
 self.y = y

 def dist_from_origin(self) -> float:
 return (self.x**2 + self.y**2) ** 0.5

 def translate_x(self, dx: float) -> None:
 self.x += dx

 def translate_y(self, dy: float) -> None:
 self.y += dy

pt: Point = Point(2.0, 1.0)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Let’s implement some magic in VS Code!

Shifting gears… remember recursion?

Recall these functions: what was the issue with the icarus function?

The dreaded Recursion Error!

Stack Overflow and Recursion Errors

When a programmer writes a function that calls itself indefinitely (infinitely), the
function call stack will overflow…

This leads to a Stack Overflow or Recursion Error:

RecursionError: maximum recursion depth exceeded while
calling a Python object

Recursive function checklist:

Base case:

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Does the function have a recursive case that progresses toward the base case?
❏ Does the recursive call have the right arguments? The function should call itself on a simpler or smaller version of

the problem.

❏ Have you tested your function with multiple cases, including edge cases?

To calculate the factorial of an int, n, we would multiply n by (n-1), then (n-2), and so
on, until we reach 1.

For instance, to calculate 5!, we would do: 5 * 4 * 3 * 2 * 1, which would evaluate
to 120.

Another example of recursion: factorial!

def factorial(n: int) -> int:
 # Base case: factorial of 0 or 1 is 1
 if n <= 1:
 return 1
 # Recursive case: n! = n × (n-1)!
 return n * factorial(n - 1)

return 2 * 1

Visualizing recursive calls to factorial
factorial(n = 4)

return n * factorial(n - 1)
return 4 * factorial(3)

return n * factorial(n - 1)
return 3 * factorial(2)

return n * factorial(n - 1)
return 2 * factorial(1)

return 1

return 3 * 2

return 4 * 6

return 2

return 6

return 24

Recursion: defining an operation/object in terms of itself

A real-world phenomenon! Examples:

● You have parents, who have parents, who have parents, who have parents, who…
… were the first humans

● A tree has branches, which have branches, which have branches, which…
… have leaves

Recursion: defining an operation/object in terms of itself

A real-world phenomenon! Examples:

● You have parents, who have parents, who have parents, who have parents, who…
… were the first humans

● A tree has branches, which have branches, which have branches, which…
… have leaves

Different recursive structures
for different purposes

Six degrees of Kevin Bacon

graph/network

Coordinating plans before
3-way calls were possible

linked list

factorial Algorithm

Conceptually, what will our base case be?

Create a recursive function called factorial that will calculate the product of all positive
integers less than or equal to an int, n. E.g.,

factorial(n=5) would return: 5*4*3*2*1 = 120
factorial(n=2) would return: 2*1 = 2
factorial(n=1) would return: 1 = 1
factorial(n=0) would return: 1

What will our recursive case be?

What is an edge case for this function? How could we account for it?

Visualizing recursive calls to factorial

return 2 * 1

Visualizing recursive calls to factorial
factorial(n = 4)

return n * factorial(n - 1)
return 4 * factorial(3)

return n * factorial(n - 1)
return 3 * factorial(2)

return n * factorial(n - 1)
return 2 * factorial(1)

return 1

return 3 * 2

return 4 * 6

returns 4 * 6 = 24

Let’s write the factorial function in VS Code!

Memory diagram

Checklist for developing a recursive function:

Base case:

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Ensure the function moves closer to the base case with each recursive call.
❏ Combine returned results from recursive calls where necessary.
❏ Test the function with edge cases (e.g., empty inputs, smallest and largest valid

inputs, etc.). Does the function account for these cases?

