Does your bestie renemy) Need to take COMP1107?

| still have seats available in my Summer Session | sections!
This is a great opportunity to:

e Take COMP110 in a small class environment
e Focus on COMP110 without having to balance other classes
e Not have to sit on the waitlist for COMP110 in a future semester

CL29 — S Magic Methods %
and Recursion Review

Announcements

Re: Quiz 03:

e Regrade requests will be open till 11:59pm on Wednesday!

o Please submit a regrade request if you believe your quiz was not graded correctly according to the
rubric

Re: Quiz 04:

e Practice quiz will be available on the site today
o Come to Tutoring to work through it with TAs today (5-7pm in SN0O11)!

e If you have a UAA and want to reschedule your quiz to another date, please let me
know!

(Reminder: The River Simulation exercise is due Friday at 11:59pm. Start early!)

https://comp110-25s.github.io/exercises/ex04_river_sim.html

Warmup: Try printing a Point or Line object from last lecture!

0 class Point: What happens?
1 x: float

2 y: float

K]

4 def init (self, x: float, y: float):

5 self.x = x

6 self.y =y

7

8 def dist from origin(self) -> float:

9 return (self.x**2 + self.y**2) ** (0.5
10
11 def translate x(self, dx: float) -> None:
12 self.x += dx
13
14 def translate y(self, dy: float) -> None:
15 self.y += dy
16

17 pt: Point = Point (2.0, 1.0)

Warmup: Try printing a Point or Line object from last lecture!

0 class Point: What happens?
1 x: float

2 y: float

K]

4 def init (self, x: float, y: float):

5 self.x = x

6 self.y =y

7

8 def dist from origin(self) -> float:

9 return (self.x**2 + self.y**2) ** (0.5
10
11 def translate x(self, dx: float) -> None:
12 self.x += dx
13
14 def translate y(self, dy: float) -> None:
15 self.y += dy
16

17 pt: Point = Point (2.0, 1.0)

Let’'s implement some magic in VS Code! I —)

Shifting gears... remember recursion?

Recall these functions: what was the issue with the icarus function?

1 def icarus(x: int) —> int:

2 """Unbound aspirations!"""
3 print(f"Height: {x}")

4 return icarus(x=x + 1)

5

6 def safe_icarus(x: int) —> int:
7 """Bound aspirations!"""

8 if x >= 2:

9 return 1

10 else:

11 return 1 + safe_icarus(x=x + 1)
12

13 print(safe_icarus(x=0))

The dreaded Recursion Error!

Stack Overflow and Recursion Errors

When a programmer writes a function that calls itself indefinitely (infinitely), the
function call stack will overflow...
This leads to a Stack Overflow or Recursion Error:

RecursionError: maximum recursion depth exceeded while
calling a Python object

Recursive function checklist:

Base case:

A Does the function have a clear base case?
Ensure the base case returns a result directly (without calling the function again).

[Will the base case always be reached?

Recursive case:

A Does the function have a recursive case that progresses toward the base case?

(A Does the recursive call have the right arguments? The function should call itself on a simpler or smaller version of
the problem.

A Have you tested your function with multiple cases, including edge cases?

Another example of recursion: factorial!

To calculate the factorial of an int, n, we would multiply n by (n-1), then (n-2), and so
on, until we reach 1.

For instance, to calculate 5!, we would do: 5 * 4 * 3 * 2 * 1 which would evaluate
to 120.

def factorial(n: int) -> int:
Base case: factorial of 0 or 1 is 1
if n <= 1:
return 1
Recursive case: n! = n x (n-1)!

return n * factorial(n - 1)

Visualizing recursive calls to factorial

factorial(n = 4)

\\\s>.return n * factorial(n - 1)

return 4 * factorial(3)

return 4..%* 6~<————_T
return \) e N
return n * factorial(n - 1)

return 3 * factorial(2)
return 3 *

return 6 \)
return n * factorial(n - 1)

return 2 * factorial(1)
return 2 * 1

return O—\
return 1

Recursion: defining an operation/object in terms of itself

A real-world phenomenon! Examples:

e You have parents, who have parents, who have parents, who have parents, who...
... were the first humans

e Atree has branches, which have branches, which have branches, which...
... have leaves

Recursion: defining an operation/object in terms of itself

A real-world phenomenon! Examples:

e You have parents, who have parents, who have parents, who have parents, who...
... were the first humans

e Atree has branches, which have branches, which have branches, which...
... have leaves

Different recursive structures
for different purposes

Coordinating plans before

Six degrees of Kevin Bacon 3-way calls were possible

graph/network linked list

factorial Algorithm

Create a recursive function called factorial that will calculate the product of all positive
integers less than or equal to an int, n. E.g.,

factorial (n=5) would return: 5*4*3*2*1 =120
factorial (n=2) would return: 2*1 = 2
factorial (n=1) would return: 1 =1
factorial (n=0) would return: 1

Conceptually, what will our base case be?

What will our recursive case be?

What is an edge case for this function? How could we account for it?

Visualizing recursive calls to factorial

Visualizing recursive calls to factorial

factorial(n = 4) returns 4 * 6 = 24

\\\~>.return n * factorial(n - 1)

return 4 * factorial(3)

return 4 * 6<<———__jL

(\
return n * factorial(n - 1)

return 3 * factorial(2)

return 3 * 2‘4———~\1L

N\
geturn n * factorial(n - 1)

return 2 * factorial(1)
return 2 * 1

\) return 1

Let’'s write the factorial function in VS Code! l -

Memory diagram

© 00O N O U1 A WN B

= =
N B S

Factorial
def factorial(n: int) —-> int:
"""Calculates factorial of int n."""
Base case
if n = 0 or n ==
return 1
Recursive case
else:
return n x factorial(n - 1)

Example usage
print(factorial(3))

O 0O NO U B WN =

[Y
N R

"""Mysterious 'rev' from source (src) to destination (dest)!"""

def rev(src: str, i: int, dest: str) —> str:
"""You happen upon a magical lil function...
if i >= len(src):
return dest
else:
return rev(src=src, i=i + 1, dest=src[i] + dest)

print(rev(src="1lwo" . i=0' dest=""))

Checklist for developing a recursive function:

Base case:

A Does the function have a clear base case?
Ensure the base case returns a result directly (without calling the function again).

[Will the base case always be reached?
Recursive case:

A Ensure the function moves closer to the base case with each recursive call.

A Combine returned results from recursive calls where necessary.

A Test the function with edge cases (e.g., empty inputs, smallest and largest valid
inputs, etc.). Does the function account for these cases?

