Quiz 1 Review Session

Content on Quiz 1

Cumulative! New topics build on old ones
Boolean Operators

Conditions (if/else/elif)

f-strings, Positional Arguments

Recursion

Named Constants, Default Parameters

Disclaimer: We haven't seen the quiz; this review
session covers the main topics in the unit.

Boolean Operators

e or - either s true
e and - both are true
e not - negating: True becomes False, False becomes True

Precedence (highest to lowest):

0. Arithmetic operators (PEMDAS)
1. Relational Operators

2 \\[o]

3. And

4. Or

Boolean Operators

What is the result of the following expressions?

A 2

not True and not False False
3+4<50r5-4== False
True or False and not (False and True) True
"A" _-— "a" Or "B" _-— "Bll True

Conditionals

if and elif statements must be followed by a boolean condition

The condition must be simplified

The then block following if, elif, and else blocks are indented

After completing the then block of one ff, elif, or else block, you continue onto
the next statement after the if-else r

<then, execute these statements>
else:

<execute these other statements>

<rest of program>

Conditionals

True or False?

For every if, there needs to be an else False

For every else, there needs to be an if True

The condition following if and elif must be a numerical expression False, boolean
elif statements help us simplify code, making it easier to read True

2 7

How many if’s can | have for an else? 1
How many elif's can | have for an if? 0, or infinite
How many else’s can | have for an if? 1

‘R

f-strings

e Helps us format strings easily by allowing us to embed expressions directly
into the string

print (£"Quiz {0 + 1} is in {14 - 12} days!")

Keyword Arguments

Previously: def sum(nt) -> int:

sum (:)

Keyword arguments:

e assigning values based on parameter names
e order doesn't matter!

sum ()

sum ()

Positional Arguments

As opposed to positional arguments;

e \alues are assigned based on the order (position) of arguments
e order does matter def sum() -> int:

;o

How do you tell positional and keyword arguments apart?

sum(

e positional: if arguments in a function call only contains values
e keyword: if parameter names appear in the function call

Recursion

Calling a function within itself, or multiple functions repeatedly call each other
Made up of (at least) one base case and (at least) one recursive case
Base case: a branch where the function stops, and does not recur

A recursive case must make progress towards the base case

o Progress is typically made by changing the argument of the recursive call so that the argument
gets closer to the base case

Infinite recursion results in a RecursionError or StackOverflowError

def safe_icarus(x: int) —> int:
"""Bound aspirations!"""
IF o=
return 1
else:
return 1 + safe_icarus(x=x + 1)

Recursion

True or False?

=> The base case allows a recursive function to stop True
=> Arecursive case should make progress away from the base case False

Is there anything wrong with the following code? _
Yes - the recursive call

def factorial_ish(n: int) —> int: factorial ish (n) does not
"""Return the factorial of a number!""" make progress towards the
if n == 0 or n == 1: base case. Something like
return 1 factorial ish (n) does
return (n x factorial_ish(n) - 1) make progress towards the

base case

) N OO U B WN R

ANSSSNY

ESSANERAY

def power(base, exponent) —> int:
"""Return base raised to the power of exponent computed recursively."""
if exponent ==
return 1
return base * power(base, exponent - 1)

print(power(2, 3))

Solution

brse | A

(_xr m(v&‘ LB_

Named Constants + Default Parameters

Named Constants:

e Hold the same value throughout the entire program
e Naming convention: ALL_CAPS, with underscores between words

Default Parameters:

e A parameter in a function signature that is set to a value

e |If the function call does not include an argument value for that parameter, we use
the default value

e Should always come after any non-default parameters

Default Parameters

Given the function signature, are the following function calls valid?
def study_or_not(days_left: int, am_lazy: bool, target_grade: int = 100) -> bool:

1. study_or_not(True, 2, 100) No

2 study_or_not(am_lazy=False, days_left=2) 5

3. study_or_not(2, True) Yes

Code Writing Practice

Write a function called study or not that takes in three parameters and
matches the following criteria:

e One int parameter called days left, one str parameter called am lazy,
one int parameter called target grade.

e I[fam lazyis "Yes"
o if the target grade is higher than 75 or you have less than 4 days left, return "Yes!"
o if not, return "Take a break!"
*we strongly encourage

e Otherwise, return "Yes!" e

Write a call to the function so that "Take a break!" returns.

One Solution:

def study_or_not(days_left: int, am_lazy: str, target_grade: int) -—> str:
if am_lazy == "Yes":
if target_grade > 75 or days_left < 4:
return "Yes!"
else:
return "Take a break!"
return "Yes!"

study_or_not(days_left=5, am_lazy="Yes", target_grade=70)

Questions?

Other Resources!

e Practice quiz on the course site with answers and explanations

o We would recommend trying the problems out on your own, then checking your answers
e Tutoring

o Thursday 3-5in FB 141
e Office Hours

o Tomorrow and Friday 11 - 5 in SNOO8

