
CL30 – Recursive Structures 
& Processes



Announcements

Re: Quiz 03:

● Regrade requests will be open till 11:59pm (tonight)! 
○ Please submit a regrade request if you believe your quiz was not graded correctly according to the 

rubric

Re: Quiz 04:

● Practice quiz is on the site
○ Come to Tutoring to work through it with TAs today (5-7pm in SN011)! 

● If you have a UAA and want to reschedule your quiz to another date, please let me 
know!

Assignments:

● LS13: Recursive Structures released today, due tomorrow (April 10)



Recursion: defining an operation/object in terms of itself

A real-world phenomenon! Examples:

● You have parents, who have parents, who have parents, who have parents, who… 
… were the first humans 

● A tree has branches, which have branches, which have branches, which… 
… have leaves



Different recursive structures 
for different purposes

Six degrees of Kevin Bacon

graph/network

Coordinating plans before 
3-way calls were possible

linked list



Anatomy of a Singly-Linked List



Memory diagram



A Recursive sum Algorithm Demo

1. When you are asked, 
"what is your sum?"

2. Ask the next Node, 
"what is your sum?"

Wait patiently for an answer!

3. Once the answer is returned back 
to you, add your value to it, then 
turn to the person who asked you 
and give them this answer.

1

2

3

None

What is 
your sum?

What is your sum?

What is your sum?

What is your sum? It's 0!

It's 3!

It's 5!

It's 6!



Let’s write a recursive function called sum!

Write a function called sum that adds 
up the values of all Nodes in the 
linked list.



Diagramming the sum function call



For reference: checklist for developing a recursive function:

Base case: 

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Ensure the function moves closer to the base case with each recursive call.
❏ Combine returned results from recursive calls where necessary.
❏ Test the function with edge cases (e.g., empty inputs, smallest and largest valid 

inputs, etc.). Does the function account for these cases?


