(OMP
110

OOP Part 2: Classes
and Methods

Announcements

Quiz 03 will be returned soon!

LS12 (Intro to OOP) and CQO05 (today’s memory diagram) due

today

Your next EX will be released by Friday

Quiz 04 on April 16 (two weeks from today)

o Reminder to schedule with ARS

o Reach out to me if you have a University-Approved
Absence

Need to reschedule your final exam? Please fill out this form!

Warm-up: Complete the Diagram

1l class Profile:
2 username: str

3 followers: list[str]

4 following: list[str]

)

6 def init (self, handle: str):

7 self.username = handle

8 self.followers = []

9 self.following = []
10
11 # Method definitions
12 def follow(self, username: str) -> None: .)
13 self.following.append(username) We're learning about these today! They are
14 unused in this diagram, so ignore them.
15 def following count(self) -> int:
16 return len(self.following)
17

18 my prof: Profile = Profile("compllOfan")

This argument is passed to the handle
parameter of __init_ .

Warm-up: Complete the Diagram

1l class Profile:

username: str
followers: list[str]
following: list[str]

def init (self, handle: str):
self.username = handle
self.followers []
self.following []

Method definitions
def follow(self, username: str) -> None:
self.following. append (username)

def following count(self) -> int:
return len(self.following)

18 my prof: Profile = Profile("compllOfan")

But first, a review of classes and objects

e Think of a class as a blueprint/

template
o Defines attributes and behaviors its
objects will have
e An object is an instance of a class
o E.g., if the class is the blueprint, the
object is the house!
o Has all the specified attributes and
behaviors
o Different objects share these
attributes and behaviors, but are
distinct!

What does Picasso’s “Bull” progression show?

Pablo Picasso. Bull (1945). A Lithographic Progression.

Abstraction: whittling down to the essentials

Real-world example: Flights

What information do you need when
you're preparing for (or actively on) a
flight?
d ALL of the flight details?

d E.g., how the pilot flies the plane

Or,
A Only the ones that are essential for
you to know?
3 Departure and arrival ALithograptis Progression
times/cities, your seat
assignment, plans after landing ;

Abstraction: whittling down to the essentials

Monday’s example: Instagram Profiles

When you:

4 Follow someone

1 Make your account private

1 Post a new photo

Do you think about what’'s happening
behind the scenes (in Meta’'s code)?

< unc.csxl

unc.csxl c-°

/L

UNC Computer Science Experience Labs
Co-Lab and Learning Lab located in SN156 for undergrads in computer

science. Come visit us!
@ csxl.unc.edu + 1

Following v Message +2

Followed by therealkrisjordan, miss_alys_| + 3 more

37 322 123
posts followers following

: G
()

MICHELLE KIEU

():» THE WEEK. OF THE WEEK:
Ao BRIANNA TA
=N\ /ﬁ

Objects are a data abstraction

All objects have:

1.

2.

An internal representation
a. Data attributes
An interface for interacting with the
object
a. Interface defines behaviors but
hides implementation (the details!)
b. Methods: Functions defined within a
class
I. self is the first parameter

< unc.csxl

unc.csxl e--
/A
Following v Message +2
UNC Computer Science Experience Labs
Co-Lab and Learning Lab located in SN156 for undergrads in computer

science. Come visit us!
@ csxl.unc.edu + 1

Followed by therealkrisjordan, miss_alys_| + 3 more

37 322 123
posts followers following

4
COMMUNITY MEMBER
MICHELLE KIEU

OF THE WEEK OF THE WEEK:
Ao BRIANNA TA ['
) I

Methods: defined in the class, called on objects

1l class Profile:

17
18
19

username: str
followers: list[str]
following: list[str]

def init (self, handle: str):
self.username = handle
self.followers []
self.following []

Method definitions

def follow(self, username: str) -> None: ..

self.following. append (username) Method definitions
(first parameter is self)!

def following count(self) -> int:

return len(self.following)

my prof: Profile = Profile("compllOfan") # Calls _ init ()

20 my prof.follow("unc.latinosintech") =) \|ethod call

21 print(my prof.following count())

<object>.<method>(<non-self arguments>)

Memory diagram (today’s CQ)

1 class Profile:

2 username: str

3 followers: list[str]

4 following: list[str]

5

6 def init (self, handle: str):

7 self .username = handle

8 self.followers = []

9 self.following = []

10

11 # Method definitions

12 def follow(self, username: str) -> None:
13 self.following.append (username)
14
15 def following count(self) -> int:
16 return len(self.following)
17

18 my prof: Profile = Profile("compllOfan")
19

20 my prof.follow("unc.latinosintech")

21 print(my prof.following count())

Code writing

class Point:
x: float
y: float

def __init_ (self, x: float, y: float):
self.x X
self.y =y

def dist_from_origin(self) —> float:
return (self.xxx2 + self.yx%2) xx 0.5

def translate_x(self, dx: float) —> None:
self.x += dx

p@: Point = Point(10.0, 0.0)
p@.translate_x(-5.0)
print(p@.dist_from_origin())

Following line 18, write additional
lines of code that:

1. Declares an additional variable
of type Point and initializes it to
a new Point object with
coordinates (1.0, 2.0)

2. Call the translate x method
on your Point object, passing
an argument of 1.0.

3. Print the value returned by
calling the dist _from origin
method on your Point object.

What would the printed output be?
(This is great additional practice to try
diagramming!)

Want more practice?

Memory Diagram

O 00 NO UL WN B

10
11
12
i3
14
15
16
157
18

class Point:
x: float
y: float

def __init_ (self, x: float, y: float):
self.x = x
self.y =y

def dist_from_origin(self) —> float:
return (self.xx*2 + self.y**2) *x 0.5

def translate_x(self, dx: float) —> None:
self.x += dx

p@: Point = Point(10.0, 0.0)
p@.translate_x(-5.0)
print(p@.dist_from_origin())

Distance Formula
Class and method writing

A(X,, ;)
2 2
/ d= X,~ X1)+(Y2_Y1)

B(x. ¥,)

e \Write a class called Coordinate

e |t should have two attributes:

o x: floatandy: float
e Write a that takes three parameters:
o self, x (float) andy (float)
e \Write a method called get dist that takes as parameters self and other
(another Coordinate object). The method should return the distance

between the two Coordinate objects (use the equation above!).

