Hack110 Sign-Up Form!

When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby

Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or come as
yourself (we’ll have team-building activities if you want a partner)

Come for a fun day of coding, workshops and events (food and CLE credit will be provided):
- Choose between web development or game development track

- Go to various workshops & events such as: Navigating the CS :
Major, Resume workshop, ice cream station, and kahoot trivia and Sln-U Here!
MORE!

- Link: Sign-Up Here! Or via the QR code —
- Sign-Up form EXTENDED TO Monday, March 31st at 11:59 pm
- Spots are limited! So we'll prioritize interest!

- If you have a partner, ONLY ONE OF YOU has to sign up -
you will just enter your partner’s info in the form.

CL24: Time Complexity and
Practice with Sets and Dictionaries

Announcements

e Quiz 02 grades were released on Friday — median ~85%)!
o Please submit regrade requests by this Friday at 11:59pm

e LS11 — Dictionaries due today
e EXO03 due this Wednesday (March 26)!

e Quiz 03 on Friday, March 28

o Review Session on Wednesday (March 26) at 6:15pm in Fred Brooks (FB) 009
o Other ways to prep:
m Pause to consider how you’ve been studying for the quizzes; what has helped and what
hasn’t?
Review Quiz 02 to address your gaps in understanding
Finish EX03 and review your code — try to diagram example function calls!
Practice Quiz
Please visit us in Office Hours + Tutoring!

Review of the previous lecture

1 def intersection(a: list[str], b: list[str]) -> list[str]: Assume our unit of "operation" is the number of
2 result: list[str] = [] . .
times the block of lines #9-12 are evaluated.

idx_a: int = 0
5 while idx_a < len(a):
' 1dx_b: int =@ Q1. Can different values of a and b lead to a
found: bool = False)) . .
while not found and idx_b < len(b): difference in the number of operations required for

AR e - the intersection function evaluation to complete?

10 found = True

11 result.append(alidx_al)
12 idx_b += 1 . .
13 idx_a += 1 Q2. If so, provide example item values for a and b

which require the fewest operations to complete?
Then try for the maximal operations to complete?

return result

foo: list[strl ["a", "b"]
19 bar: listlstr] = ["c”, "b"] Q3. Assuming the item values of a and b are

print(intersection(foo, bar)) .
random and unpredictable, about how many
operations does this function take to complete?

As the lengths of a and b grow, the number of operations grows quadratically

°

1 def intersection(a: list[str], b: list[str]) —> list[str]:

2 result: list[str] = []

3

4 idx_a: int = 0

5 while idx_a < len(a):

6 idx_b: int = 0

7 found: bool = False

8 while not found and idx_b < len(b):

9 if alidx_al == b[idx_b]:

10 found = True

11 result.append(alidx_al)
12 idx_b += 1

13 idx_a += 1
14

ills; return result 1.
16

17
18 foo: list[str] = ["a", "b"] 2
19 bar: list[str] = ["c", "b"] ’
20 print(intersection(foo, bar))

Outer while loop iterates through each element of a
o Ifthere are N elements, we’'ll iterate N times
And within each iteration of the outer while loop...
The inner while loop iterates through elements of b until
either:
o We find a value that == the current element in a
OR,
o We have “visited” (accessed) every element in b
m Ifthere are M elements in b, we’ll iterate up
to M times

Assuming a and b both have 3 elements...

Example of values of a and b that will cause the fewest

operations to occur?

intersection (a= ["a" , "a" , "a"] , b= ["a" , Hb" , "c"])

Example of values of a and b that will cause the most

operations to occur?

intersection (a= ["a" , "b" , "c"] , b= ["d" , "e" , Hf"])

If list a has N elements and list b has M elements, the “worst case scenario” is that this code will cause
N*M operations to occur.

Comparing lists and sets

def intersection(a: list[str], b: list[str]) —> list[str]: 1 def intersection(a: list[str]l, b: set[str]) —> setl[str]:

result: list[str] = [] 2 result: set[str] = set()
idx_a: int = 0 4 idx_a: int = 0
while idx_a < len(a): 5 while idx_a < len(a):

if alidx_al in b: if alidx_al in b:

result.append(alidx_a]l) result.add(alidx_al)

idx_a += 1 8 idx_a += 1

return result 10 return result

Suppose a and b each had 1,000,000 elements. The worst case difference here is
approximately 1,000,000 operations, versus 1,000,000**2 or 1,000,000,000,000
operations.

If your device can perform 100,000,000 operations per second, then...

A call to a will complete in 2.78 hours and b will complete in 1/100th of a second.

Let's explore Set syntax in VSCode together...

In your cl directory, add a file named cl24 _dictionaries.py with the following starter:

"""Examples of set and dictionary syntax.

pids: set[int] = {710000000, 712345678}

One quirk about sets: to add a value, use the .add () method!
Try evaluating the following expression:
pids.add (730120710)

Let’s explore Dictionary syntax in VSCode together...
In your cl24_dictionaries.py file, add the code:

ice_cream: dict[str, int] = {
"chocolate": 12,
"vanilla": 8,
"strawberry": 4,

}

Try evaluating the following expression:
ice cream["vanilla"] += 110

Syntax Let's try it!
Create a dictionary called

ice_cream that stores the

Data type: following orders
_ Keys Values
temps: dict[str,] choTEe

I
Construct an empty dict:

temps: dict[str,] = dict() or
temps: dict[str, 1={}

Construct a populated dict:
temps: dict[str,] = {"Florida": 72.5, "Raleigh": 56.0}

Length of dictionary

len(<dict name>)

len(temps)

Let’s try it!

Print out the length of ice_cream.

What exactly is this telling you?

10

Adding elements

We use subscription notation.
<dict name>|] = <value>

temps|]=52.1

Let’s try it!

Add 3 orders of "mint" to your

ice_cream dictionary.

1

Access + Modify Let’s try it!

Print out how many orders there

are of "chocolate".
To access a V_alue’ _ Update the number of orders of
use subscription notation: Vanilla to 10.
<dict name>|]
temps]]

To modify, also use subscription notation:
<dict name>|] = new value
temps|]=53.1 or temps]|]+=1

12

Important Note: Can’t Have Multiple of Same Key

Keys Values
' Y
Flavor Num Orders
| "chocolate” 12
"vanilla" 10
"strawberry" 5
"c?ho;ole;e" 10

(Duplicate values are okay.)

Keys Values
Y Y
Flavor Num Orders
"chocolate” 12
"vanilla" 10
"strawberry")
"mint" 5_

13

Check if key in dictionary

In <dict name>
In temps

In temps

Let’s try it!

Check if both the flavors "mint" and
"chocolate" are in ice_cream.

Write a conditional that behaves the
following way:
If "mint" is in ice_cream, print out how
many orders of "mint" there are.
If it's not, print "no orders of mint".

14

Removing elements

Similar to lists, we use pop()

<dict name>.pop()

temps.pop()

Let’s try it!

Remove the orders of "strawberry"
from ice_cream.

15

"for" Loops

"for" loops iterate over the keys by default

for key in ice_cream:
print(key)

Let’s try it!

Use a for loop to print:

chocolate has 12 orders.

vanilla has 10 orders.

strawberry has 5 orders.

for key in ice_cream:
print(ice _cream[key])

Flavor Num Orders
"chocolate" 12

"vanilla" 10
"strawberry" 5

16

Final Notes

This is the code we worked
through together in class, for
reference.

O 00 NO UL WN B

W W wwwwNNNNNNNNNNRRRRRRRR R 2
U A WNRPSOOWOWOWNOUD WNREROOOWOONOULESEWNRS

"""Examples of dictionary syntax with Ice Cream Shop order tallies."""

Dictionary type is dict[key_type, value_type].
Dictionary literals are curly brackets
that surround with key:value pairs.
ice_cream: dict[str, int] = {
"chocolate": 12,
"vanilla": 8,
"strawberry": 4,

len evaluates to number of key-value entries
print(f"{len(ice_cream)} flavors")

Add key-value entries using subscription notation
ice_cream["mint"] = 3

Access values by their key using subscription
print(ice_cream["chocolate"])

Re-assign values by their key using assignment
ice_cream["vanilla"] += 10

Remove items by key using the pop method
ice_cream.pop("strawberry")

Loop through items using for-in loops
total_orders: int = @
The variable (e.g. flavor) iterates over
each key one-by-one in the dictionary.
for flavor in ice_cream:
print(f"{flavor}: {ice_cream[flavor]}")
total_orders += ice_cream[flavor]

print(f"Total orders: {total_orders}")

17

