
Hack110 Sign-Up Form!
When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby
Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or come as
yourself (we’ll have team-building activities if you want a partner)
Come for a fun day of coding, workshops and events (food and CLE credit will be provided):

- Choose between web development or game development track
- Go to various workshops & events such as: Navigating the CS

Major, Resume workshop, ice cream station, and kahoot trivia and
MORE!

- Link: Sign-Up Here! Or via the QR code
- Sign-Up form EXTENDED TO Monday, March 31st at 11:59 pm

- Spots are limited! So we’ll prioritize interest!
- If you have a partner, ONLY ONE OF YOU has to sign up -

you will just enter your partner’s info in the form.

Sign-Up Here!

CL24: Time Complexity and
Practice with Sets and Dictionaries

Announcements

● Quiz 02 grades were released on Friday – median ~85%!
○ Please submit regrade requests by this Friday at 11:59pm

● LS11 – Dictionaries due today
● EX03 due this Wednesday (March 26)!
● Quiz 03 on Friday, March 28

○ Review Session on Wednesday (March 26) at 6:15pm in Fred Brooks (FB) 009
○ Other ways to prep:

■ Pause to consider how you’ve been studying for the quizzes; what has helped and what
hasn’t?

■ Review Quiz 02 to address your gaps in understanding
■ Finish EX03 and review your code – try to diagram example function calls!
■ Practice Quiz
■ Please visit us in Office Hours + Tutoring!

Review of the previous lecture
Assume our unit of "operation" is the number of
times the block of lines #9-12 are evaluated.

Q1. Can different values of a and b lead to a
difference in the number of operations required for
the intersection function evaluation to complete?

Q2. If so, provide example item values for a and b
which require the fewest operations to complete?
Then try for the maximal operations to complete?

Q3. Assuming the item values of a and b are
random and unpredictable, about how many
operations does this function take to complete?

As the lengths of a and b grow, the number of operations grows quadratically
● Outer while loop iterates through each element of a

○ If there are N elements, we’ll iterate N times
● And within each iteration of the outer while loop…
● The inner while loop iterates through elements of b until

either:
○ We find a value that == the current element in a

OR,
○ We have “visited” (accessed) every element in b

■ If there are M elements in b, we’ll iterate up
to M times

Assuming a and b both have 3 elements…
1. Example of values of a and b that will cause the fewest

operations to occur?
intersection(a=["a", "a", "a"], b=["a", "b", "c"])

2. Example of values of a and b that will cause the most
operations to occur?
intersection(a=["a", "b", "c"], b=["d", "e", "f"])

If list a has N elements and list b has M elements, the “worst case scenario” is that this code will cause
N*M operations to occur.

Comparing lists and sets

Suppose a and b each had 1,000,000 elements. The worst case difference here is
approximately 1,000,000 operations, versus 1,000,000**2 or 1,000,000,000,000
operations.

If your device can perform 100,000,000 operations per second, then...

A call to a will complete in 2.78 hours and b will complete in 1/100th of a second.

Let’s explore Set syntax in VSCode together…

In your cl directory, add a file named cl24_dictionaries.py with the following starter:

"""Examples of set and dictionary syntax."""

pids: set[int] = {710000000, 712345678}

One quirk about sets: to add a value, use the .add() method!
Try evaluating the following expression:
pids.add(730120710)

7

Let’s explore Dictionary syntax in VSCode together…

In your cl24_dictionaries.py file, add the code:

ice_cream: dict[str, int] = {

 "chocolate": 12,

 "vanilla": 8,

 "strawberry": 4,

}

Try evaluating the following expression:
 ice_cream["vanilla"] += 110

8

Syntax

Data type:

name: dict[<key type>, <value type>]
temps: dict[str, float]

Construct an empty dict:
temps: dict[str, float] = dict() or
temps: dict[str, float] = {}

Construct a populated dict:
temps: dict[str, float] = {"Florida": 72.5, "Raleigh": 56.0}

9

Let’s try it!
Create a dictionary called
ice_cream that stores the

following orders

Keys Values

chocolate 12

vanilla 8

strawberry 5

Length of dictionary

len(<dict name>)

len(temps)

10

Let’s try it!

Print out the length of ice_cream.

What exactly is this telling you?

Adding elements

We use subscription notation.

<dict name>[<key>] = <value>

temps["DC"] = 52.1

11

Let’s try it!

Add 3 orders of "mint" to your
ice_cream dictionary.

Access + Modify

To access a value,
use subscription notation:

<dict name>[<key>]
temps["DC"]

To modify, also use subscription notation:
<dict name>[<key>] = new_value
temps["DC"] = 53.1 or temps["DC"] += 1

12

Let’s try it!

Print out how many orders there
are of "chocolate".

Update the number of orders of
Vanilla to 10.

Important Note: Can’t Have Multiple of Same Key

(Duplicate values are okay.)

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

"chocolate" 10

Keys Values

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

"mint" 5

Keys Values

13

Check if key in dictionary

<key> in <dict name>

"DC" in temps

"Florida" in temps

14

Let’s try it!

Check if both the flavors "mint" and
"chocolate" are in ice_cream.

Write a conditional that behaves the
following way:

If "mint" is in ice_cream, print out how
many orders of "mint" there are.

If it’s not, print "no orders of mint".

Removing elements

Similar to lists, we use pop()

<dict name>.pop(<key>)

temps.pop("Florida")

15

Let’s try it!

Remove the orders of "strawberry"
from ice_cream.

"for" Loops

"for" loops iterate over the keys by default

16

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

for key in ice_cream:
print(key)

for key in ice_cream:
print(ice_cream[key])

Let’s try it!

Use a for loop to print:
chocolate has 12 orders.

vanilla has 10 orders.
strawberry has 5 orders.

Final Notes

This is the code we worked
through together in class, for
reference.

17

