
Hack110 Sign-Up Form!
When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby
Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or come as
yourself (we’ll have team-building activities if you want a partner)
Come for a fun day of coding, workshops and events (food and CLE credit will be provided):

- Choose between web development or game development track
- Go to various workshops & events such as: Navigating the CS

Major, Resume workshop, ice cream station, and kahoot trivia and
MORE!

- Link: Sign-Up Here! Or via the QR code
- Sign-Up form EXTENDED TO Monday, March 31st at 11:59 pm

- Spots are limited! So we’ll prioritize interest!
- If you have a partner, ONLY ONE OF YOU has to sign up -

you will just enter your partner’s info in the form.

Sign-Up Here!

CL22: Sets and Dictionaries

Announcements

● LS11 – Dictionaries due today
● EX03 released today, due next Wednesday (March 26)!
● Quiz 03 on Friday, March 28

○ Review Session on Wednesday (March 26) at 6:15pm in Fred Brooks (FB) 009

list[str]

Index Value

0 ""

1 ""

… 710,453,081 items elided …

710453084 "krisj"

… 9,857,700 items elided …

720310785 "abyrnes1"

… 9,809,924 items elided …

730120710 "ihinks"

Using a list, we could store everyone in COMP110’s PID associated with ONYEN

Warm-up question:
Why does using a list[str] feel
wrong/inefficient?

Limits of Lists for collections of data (1/2)

Limits of Lists for collections of data (2/2)

list[str]

Index Value

0 "A1"

1 "A2"

2 "A3"

… 296 items elided …

299 "N17"

Suppose we model quiz seat assignments with lists. One list has seats, the other has
the assigned ONYEN at the same index.

Given the onyen "sjiang3", how do you algorithmically find their assigned seat?

list[str]

Index Value

0 "ihinks"

1 "abyrnes1"

2 "sjiang3"

… 296 items elided …

299 "krisj"

seats:onyens:

We could use the in operator (a new concept)…

… but try to avoid using it on lists!

Enter: sets!

Sets, like lists, are a data structure for storing collections of values.

Unlike lists, sets are unordered and each value has to be unique.
Lists: always zero-based, sequential, integer indices!

Benefit of sets: testing for the existence of an item takes only one “operation,”
regardless of the set’s size.

pids: set[str] = {730120710, 730234567, 730000000}

Great! … But what if we want to connect people’s PIDs with their ONYENs?

Enter: Dictionaries!

Dictionaries, like lists, are a data structure
for storing collections of values.

Unlike lists, dictionaries give you the ability
to decide what to index your data by.

Lists: always zero-based, sequential,
integer indices!

Dictionaries are indexed by keys
associated with values. This is a unique,
one-way mapping!

Analogous: A real-world dictionary’s
keys are words and associated values
are definitions.

8

dict[int, str]

key value

730120710 "ihinks"

710453084 "krisj"

720310785 "abyrnes1"

dict[str, str]

key value

"ihinks" "A1"

"abyrnes1" "A2"

"sjiang3" "A3"

"krisj" "N17"

pid_to_onyen:

onyen_to_seat:

Let’s diagram key concepts

9

Let’s explore Dictionary syntax in VSCode together…

In your cl directory, add a file named cl22_dictionaries.py with the following starter:

"""Examples of dictionary syntax with Ice Cream Shop order tallies."""

ice_cream: dict[str, int] = {
 "chocolate": 12,
 "vanilla": 8,
 "strawberry": 4,
}

Save, then open up this file in Trailhead's REPL and we will explore key syntax together.
Ready to go? Try evaluating the following expression:

 ice_cream["vanilla"] += 110

10

Syntax

Data type:

name: dict[<key type>, <value type>]
temps: dict[str, float]

Construct an empty dict:
temps: dict[str, float] = dict() or
temps: dict[str, float] = {}

Construct a populated dict:
temps: dict[str, float] = {"Florida": 72.5, "Raleigh": 56.0}

11

Let’s try it!
Create a dictionary called
ice_cream that stores the

following orders

Keys Values

chocolate 12

vanilla 8

strawberry 5

Length of dictionary

len(<dict name>)

len(temps)

12

Let’s try it!

Print out the length of ice_cream.

What exactly is this telling you?

Adding elements

We use subscription notation.

<dict name>[<key>] = <value>

temps["DC"] = 52.1

13

Let’s try it!

Add 3 orders of "mint" to your
ice_cream dictionary.

Access + Modify

To access a value,
use subscription notation:

<dict name>[<key>]
temps["DC"]

To modify, also use subscription notation:
<dict name>[<key>] = new_value
temps["DC"] = 53.1 or temps["DC"] += 1

14

Let’s try it!

Print out how many orders there
are of "chocolate".

Update the number of orders of
Vanilla to 10.

Important Note: Can’t Have Multiple of Same Key

(Duplicate values are okay.)

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

"chocolate" 10

Keys Values

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

"mint" 5

Keys Values

15

Check if key in dictionary

<key> in <dict name>

"DC" in temps

"Florida" in temps

16

Let’s try it!

Check if both the flavors "mint" and
"chocolate" are in ice_cream.

Write a conditional that behaves the
following way:

If "mint" is in ice_cream, print out how
many orders of "mint" there are.

If it’s not, print "no orders of mint".

Removing elements

Similar to lists, we use pop()

<dict name>.pop(<key>)

temps.pop("Florida")

17

Let’s try it!

Remove the orders of "strawberry"
from ice_cream.

"for" Loops

"for" loops iterate over the keys by default

18

Flavor Num Orders

"chocolate" 12

"vanilla" 10

"strawberry" 5

for key in ice_cream:
print(key)

for key in ice_cream:
print(ice_cream[key])

Let’s try it!

Use a for loop to print:
chocolate has 12 orders.

vanilla has 10 orders.
strawberry has 5 orders.

Final Notes

This is the code we worked
through together in class, for
reference.

19

