
Hack110 Sign-Up Form!
When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby
Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or come as
yourself (we’ll have team-building activities if you want a partner)
Come for a fun day of coding, workshops and events (food and CLE credit will be provided):

- Choose between web development or game development track
- Go to various workshops & events such as: Navigating the CS

Major, Resume workshop, ice cream station, and kahoot trivia and
MORE!

- Link: Sign-Up Here! Or via the QR code
- Sign-Up form EXTENDED TO Monday, March 31st at 11:59 pm

- Spots are limited! So we’ll prioritize interest!
- If you have a partner, ONLY ONE OF YOU has to sign up -

you will just enter your partner’s info in the form.

Sign-Up Here!

CL21: Importing and Writing
Automated Tests for Functions

Announcements

● Quiz 02 will be returned soon!
● Quiz 03 on Friday, March 28

○ Reminder to schedule with ARS or reach out to me if you have a University Excused Absence
and need to take it at another time

● EX03 will be released on Wednesday

Test-driven function-writing
Before writing a function, it’s helpful to focus on concrete examples of how the function

should behave as if it were already implemented.

Key questions to ask:
1. What are some usual arguments and expected return values?

a. These are the use cases or expected cases
2. What are some valid, but unusual arguments and expected return values?

a. These are your edge cases
b. Example: empty inputs, incorrect inputs

Below are the REPL examples of the count_regs function we wrote in the previous lecture.
Which of these represent use cases and edge cases, respectively?

Big idea: We can write functions that validate the correctness
of other functions!

In software, this concept is called testing.

Testing at a function-level is generally called unit testing in industry (a unit of functionality)
A. Helps you confirm correctness during development
B. Helps you avoid accidentally breaking things that were previously working (regressions)

The strategy:
1. Implement the "skeleton" of the function you are working on

(function name, parameters, return type, and some dummy (wrong/naive!) return value)
2. Think of examples use cases of the function and what you expect it to return in each case
3. Write a test function that makes the call(s) and compares expected return value with actual
4. Once you have a failing test case running, go correctly implement the function's body
5. Repeat steps #3 and #4 until your function meets specifications

This gives you a framework for knowing your code is behaving as you expect

Testing is no substitute for critical thinking…

● Passing your own tests does not guarantee your function is correct!
○ Your tests must validate a useful range of cases
○ It’s possible for your unit tests to be incorrect

● Rules of thumb:
○ Test >= 2 use cases and >= 1 edge case per function
○ When a function has if-else statements, or loops, write a test per branch/body

Steps to set up a pytest Test Module

To test the function definitions of a module:
1. Create a sibling module (a different file) with the same name, but ending in

_test
a. Example name of definitions module: lecture.cl20_module.py
b. Example name of test module: lecture.cl20_module_test.py
c. This convention is common to pytest

2. In the test module, import the function definitions you'd like to test
a. Example: from cl20_module import count_regs

3. Next, add tests which are procedures whose names begin with test_
a. Example test name: test_count_regs_empty

4. To run the test(s), you have two options:
a. In a new terminal: python -m pytest path/to/testfile.py
b. Use the Python Extension in VSCode's Testing Pane (the beaker icon)

https://docs.pytest.org/en/stable/

Syntax: Writing a unit test

Test file names: end with _test.py
Test function names: begin with test_

def test_name() -> None:
Other code can go here!
assert <boolean expression>

For reference:

def count_regs(coi: str, counties: list[str]) -> int:

 """Count number of people who are registered in the

specified county."""

 idx: int = 0 # Current index in counties list

 total: int = 0 # Total occurrences of county of

interest

 while idx < len(counties):

 if counties[idx] == coi:

 total += 1

 idx += 1

 return total

