

Hack110 Interest Form!
When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby
Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or
come as yourself (we’ll have team-building activities if you want a partner)
Come for a fun day of coding, workshops and events (also food will be provided):

- Choose between web development or game development track
- Go to various workshops & events such as: Navigating the CS

Major, Resume workshop, ice cream station, and kahoot trivia
and MORE!

- Link: Interest Form Here! Or via the QR code →
- Interest form will close Friday, February 28th at 11:59 pm

- Fill out this form to get priority notice of when we release
the sign-up form.

Interest Form!

https://docs.google.com/forms/d/e/1FAIpQLSfZy86eKuuczyeY-2VZzsKKEH-X1E2VBsONCeJdpuEkjzyeAw/viewform?usp=header

CL17 – Lists

Announcements

● EX02 – Wordle due Sunday, March 2
○ while loops!

● Quiz 02 on March 7!

Lists

Examples of lists:

● To-do list
● Assignment due dates
● Grocery list

A list is a data structure–something that lets you organize and store data in a
format such that they can be accessed and processed efficiently.

Lists are mutable, meaning their values can be changed after initialization.

NOTE: Lists can be an arbitrary (but finite) length! (Not a fixed number of items.)

5

Lists are Mutable Sequences in Python
Sequences are ordered, 0-indexed collections of values

Feature Syntax Purpose

Type Declaration

Constructor (function)

List Literal

Access Value

Assign Item

Length of List

Your job: Complete this table as we cover each topic today.
Once you’re finished, submit a .PDF of it to Gradescope!

(blank copy on next slide)

Lists are Mutable Sequences in Python
Sequences are ordered, 0-indexed collections of values

Feature Syntax Purpose

Type Declaration

Constructor (function)

List Literal

Access Value

Assign Item

Length of List

Declaring the type of a list

<list name>: list[<item type>]

grocery_list: list[str]

8

Declaring the type of a list

<list name>: list[<item type>]

grocery_list: list[str]

9

str, int, float, etc.

Initializing a list

With a constructor:

● <list name>: list[<item type>] = list()
● grocery_list: list[str] = list()

With a literal:

● <list name>: list[<item type>] = []
● grocery_list: list[str] = []

10

The constructor list() is a function that returns
the literal []

declare variable initialize list

“create a var called grocery_list, a list of strings, which will initially be empty”

Initializing a list

With a constructor:

● <list name>: list[<item type>] = list()
● grocery_list: list[str] = list()

With a literal:

● <list name>: list[<item type>] = []
● grocery_list: list[str] = [“apples”, “bananas”, “pears”]

11

The constructor list() is a function that returns
the literal []

declare variable initialize list

“create a var called grocery_list, a list of strings, which will initially contain these values”

Initializing a list

With a constructor:

● <list name>: list[<item type>] = list()
● grocery_list: list[str] = list()

With a literal:

● <list name>: list[<item type>] = []
● grocery_list: list[str] = []

12

The constructor list() is a function that returns
the literal []

Bringing it back to something we know, you
can create an empty string using the
constructor str() or the literal “”

Initializing a list

With a constructor:

● <list name>: list[<item type>] = list()
● grocery_list: list[str] = list()

With a literal:

● <list name>: list[<item type>] = []
● grocery_list: list[str] = []

13

The constructor list() is a function that returns
the literal []

Bringing it back to something we know, you
can create an empty string using the
constructor str() or the literal “”

Let’s try it!
Create an empty list of floats with the name

my_numbers.

<list name>.append(<item>)

grocery_list.append(“bananas”)

14

Adding an item to the end of a list

Adding an item to the end of a list

<list name>.append(<item>)

grocery_list.append(“bananas”)

● Method: a function that belongs to the list class
● Like calling append(grocery_list, “bananas”)

15

<list name>.append(<item>)

grocery_list.append(“bananas”)

● Method: a function that belongs to the list class
● Like calling append(grocery_list, “bananas”)

16

Let’s try it!
Add the value 1.5 to my_numbers.

Adding an item to the end of a list

Initializing an already populated list

<list name>: list[<item type>] = [<item 0>, <item 1>, … , <item n>]

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

17

<list name>: list[<item type>] = [<item 0>, <item 1>, … , <item n>]

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

18

Let’s try it!
Create a list called
game_points that

stores the following
numbers: 102, 86,

94

Initializing an already populated list

Indexing

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

grocery_list[0]

**Starts at 0, like with strings!

19

Indexing

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

grocery_list[0]

**Starts at 0, like with strings!

20

Let’s try it!
In game_points, use

subscription notation to print
out 94.

Modifying by index

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

grocery_list[1] = “eggs”

21

Modifying by index

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

grocery_list[1] = “eggs”

22

Let’s try it!
In game_points, use

subscription notation to
change 86 to 72.

Modifying by index

grocery_list: list[str] = [“bananas”, “milk”, “bread”]

grocery_list[1] = “eggs”

23

Let’s try it!
In game_points, use

subscription notation to
change 86 to 72.

Question: Could you do this type of modification with a string? Try it out!

Length of a list

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

len(grocery_list)

24

Length of a list

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

len(grocery_list)

25

Let’s try it!
Print the length of

game_points.

Remove an item from a list – “pop off!”

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

grocery_list.pop(2)

Index of item you want to remove

26

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

grocery_list.pop(2)

Index of item you want to remove

27

Remove an item from a list – “pop off!”

[“eggs”, “milk”, “bread”]Before:

[“eggs”, “milk”]After:

Index: 0 1 2

Index: 0 1

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

grocery_list.pop(1)

Index of item you want to remove

28

Remove an item from a list – “pop off!”

[“eggs”, “milk”, “bread”]Before:

[“eggs”, “bread”]After:

Index: 0 1 2

Index: 0 1

grocery_list: list[str] = [“eggs”, “milk”, “bread”]

grocery_list.pop(2)

Index of item you want to remove

29

Let’s try it!
Remove 72 from

game_points.

Remove an item from a list – “pop off!”

