Hack110 Interest Form!

When? Saturday, April 5th from 10 AM - 12 AM (Midnight)
Where? In Sitterson Lower Lobby

Who can join? Anyone in COMP 110! No prior experience required. Bring a partner or
come as yourself (we'll have team-building activities if you want a partner)

Come for a fun day of coding, workshops and events (also food will be provided):
- Choose between web development or game development track

- Go to various workshops & events such as: Navigating the CS Interest Form!
Major, Resume workshop, ice cream station, and kahoot trivia

and MORE!
- Link: Interest Form Here! Or via the QR code —
- Interest form will close Friday, February 28th at 11:59 pm
- Fill out this form to get priority notice of when we release
the sign-up form.

https://docs.google.com/forms/d/e/1FAIpQLSfZy86eKuuczyeY-2VZzsKKEH-X1E2VBsONCeJdpuEkjzyeAw/viewform?usp=header

CL16 — Practice with while Loops

Announcements
Quiz 01

e Great job! Median was 85%
e Please submit any regrade requests by Friday (Feb 28) at 11:59pm

e Question about something you missed? Please come see us in Office
Hours/Tutoring!

EX02 (Wordle) due Sunday, March 2 at 11:59pm
e You'll be writing 4 functions to make Wordle!
Quiz 02 next Friday (March 7)

e Question about what we’ve covered thus far? Please visit Office Hours/Tutoring!
e Practice quiz will be posted today
e Solutions video will be posted this week

O 0O NNO U B WIN =

R R R R R R R R R R
W O ~NOOWULDAE WN PO

Warm-Up: Memory Diagram

"""A countdown program..."""

def main() -> None:
seconds: int = 3
countdown(seconds)
print(f"main {seconds}")

def countdown(seconds: int) —> None:
print("T minus")
while seconds > 0:
print(seconds)
seconds = seconds - 1

print(f"countdown {seconds}")

main()

O© 00 NO U p WN =

R R R R R R R R R R
O 00O NOULULLT A WINN RS

"""A countdown program..."""

def

def

main() -> None:

seconds: int = 3
countdown(seconds)
print(f"main {seconds}")

countdown(seconds: int) —-> None:
print("T minus")
while seconds > 0:
print(seconds)
seconds = seconds - 1

print(f"countdown {seconds}")

main()

Relative Reassignment Operators

It's Very common to need to update the value of a variable, relative to its
current value, e.g.:

count: int =1

count = count + 1

Relative reassignment operators offer a shorthand way of doing this!

count += 1

O 00O N O U & WIN -

Relative Reassignment Operators

"""A countdown program...

def main() -> None:
seconds: int = 3
countdown(seconds)
print(f"main {seconds}")

def countdown(seconds: int) —> None:
print("T minus")
while seconds > 0:
print(seconds)

Try writing line 14 using a relative
seconds = seconds - 1 <@ y g g

reassignment operator!

print(f"countdown {seconds}")

main()

Your task: Convert this recursive function to one that uses
a while loop!

def safe_icarus(x: int) —> int:
"""“"Bound aspirations!"""
T == :
return 1
else:

return 1 + safe_icarus(x=x + 1)

print(safe_icarus(x=0))

A nested while loop!

1 def triangle(n: int) —> None:
P o I b o |

3 line: str

4 while 1 <= n:

5 line = ""

6 while len(line) < i:
7 line += "x"

8 print(line)

9 i+=1
10
11
12 triangle(2)

Recall: if-then-else / Conditional Statements

if <condition>:

False
l <then, execute these statements>
True¢ | Else block | else:
| Then block | <execute these statements>
l <rest of program>

Next statement lg

if-then-else Statements while Loop Statements

» False
condition l
¢ Else block True¢
Then block —| repeat block |
Next statement [Next statement | q—

while Loop Statements

while <condition>:
<execute indented repeat block>

<rest of program>

False

True¢

—| repeat block |

Next statement [

while Loop Statements

while
<execute indented repeat block>

<rest of program>

test
When we reach a while loop statement in code... condition
e \While the evaluates to True:
o Execute the repeat block
o Jump back up to the test if the is ¢

still True. This process will repeat (“iterate”)
until the condition is False. In which case... _l repeat block |
e \When the evaluates to False:
o Skip past the repeat block and continue i
on to the next line of code at the same level
of indentation as the while keyword Next statement |

Let’s try writing a function, count to n,

that will print values from 0 to n using a
while loop!

Requirements:

Name: count to n
Parameter: n, an int
Return type: None

We'll need:
e Local variable (to keep track of the count)
e while loop (to iterate through each value
of count, from 0 to n)

Output:

Count
Count
Count
Count
Count

is:
is:
is:
is:
is:

B W NhbPEL O

Let’s try writing a function, count to n,

that will print values from 0 to n using a I S

while loop!

Requirements: Output:

Name: count to n Count is: O

Parameter: n, an int Count is: 1

Return type: None Count is: 2
Count is: 3

We’ll need: Count is: 4

e Local variable (to keep track of the count)
e while loop (to iterate through each value
of count, from O to n)

Challenge: Pause the video here and try writing this function definition by yourself!

00O N O U &~ WN B

def count_to_n(n: int) —> None:
count: int = 0
while count <= n:
print(f"Count is: {count}")
count = count + 1

count_to_n(n=4)

A common problem: the dreaded infinite loop

If a condition in a while loop never def count_to_n(n: int) -> None:
becomes False, the loop will continue count: int = @
indefinitely. while count <= n:

print(f"Count is: {count}")
To prevent this: count = count + 1

e Ensure that your loop’s condition
will eventually be False! count_to_n(n=4)

A common problem: the dreaded infinite loop

If a condition in a while loop never 1 def count_to_n(n: int) —> None:
becomes False, the loop will continue count: int = @
indefinitely. while count <= n:

4 print(f"Count is: {count}")
To prevent this: count = count + 1

e Ensure that your loop’s condition
will eventually be False! count_to_n(n=4)

Which line of code in the code listing

prevents an infinite loop from occurring?
What would happen without it?

Common use cases of while loops

e User input validation: Prompt the user for a valid input until they give one to you!
o Think: our word-guessing game example, or Wordle!

e Game loops: Keep a game running until some condition is met
o Common examples: You run out of lives or attempts
e lterating through values
o Examples:
m Counting from0ton W
m Looping through every character in a string (via subscription notation)

Common use cases of while loops

e User input validation: Prompt the user for a valid input until they give one to you!
o Think: our word-guessing game example, or Wordle!

e Game loops: Keep a game running until some condition is met
o Common examples: You run out of lives or attempts
e lterating through values
o Examples:
m Counting from0ton W
m Looping through every character in a string (via subscription notation) :*

O 00O N O Ul A WIN B

R R
N RS

def reverse(a_str: str) —> str:

"""Reverse a string"""

idx: int = @

result: str = ""

while idx < len(a_str):
result = a_str[idx] + result
idx = idx + 1

return result

print(reverse(a_str="abc"))

