CL15 — while Loops



Recall: if-then-else / Conditional Statements

if <condition>:

False
l <then, execute these statements>
True¢ | Else block | else:
| Then block | <execute these statements>
l <rest of program>

Next statement lg




if-then-else Statements while Loop Statements

» False
condition l
¢ Else block True¢
Then block —| repeat block |
Next statement [ Next statement | q—




while Loop Statements

while <condition>:
<execute indented repeat block>

<rest of program>

False

True¢

—| repeat block |

Next statement [




while Loop Statements

while
<execute indented repeat block>

<rest of program>

test
When we reach a while loop statement in code... condition
e \While the evaluates to True:
o Execute the repeat block
o Jump back up to the test if the is ¢

still True. This process will repeat (“iterate”)
until the condition is False. In which case... _l repeat block |
e \When the evaluates to False:
o Skip past the repeat block and continue i
on to the next line of code at the same level
of indentation as the while keyword Next statement |




Let’s try writing a function, count to n,

that will print values from 0 to n using a
while loop!

Requirements:

Name: count to n
Parameter: n, an int
Return type: None

We'll need:
e Local variable (to keep track of the count)
e while loop (to iterate through each value
of count, from 0 to n)

Output:

Count
Count
Count
Count
Count

is:
is:
is:
is:
is:

B W NhbPEL O



Let’s try writing a function, count to n,

that will print values from 0 to n using a I S

while loop!

Requirements: Output:

Name: count to n Count is: O

Parameter: n, an int Count is: 1

Return type: None Count is: 2
Count is: 3

We’ll need: Count is: 4

e Local variable (to keep track of the count)
e while loop (to iterate through each value
of count, from O to n)

Challenge: Pause the video here and try writing this function definition by yourself!




00O N O U &~ WN B

def count_to_n(n: int) —> None:
count: int = 0
while count <= n:
print(f"Count is: {count}")
count = count + 1

count_to_n(n=4)



A common problem: the dreaded infinite loop

If a condition in a while loop never def count_to_n(n: int) -> None:
becomes False, the loop will continue count: int = @
indefinitely. while count <= n:

print(f"Count is: {count}")
To prevent this: count = count + 1

e Ensure that your loop’s condition
will eventually be False! count_to_n(n=4)



A common problem: the dreaded infinite loop

If a condition in a while loop never 1 def count_to_n(n: int) —> None:
becomes False, the loop will continue count: int = @
indefinitely. while count <= n:

4 print(f"Count is: {count}")
To prevent this: count = count + 1

e Ensure that your loop’s condition
will eventually be False! count_to_n(n=4)

Which line of code in the code listing

prevents an infinite loop from occurring?
What would happen without it?




Common use cases of while loops

e User input validation: Prompt the user for a valid input until they give one to you!
o Think: our word-guessing game example, or Wordle!

e Game loops: Keep a game running until some condition is met
o Common examples: You run out of lives or attempts
e lterating through values
o Examples:
m Counting from0ton W
m Looping through every character in a string (via subscription notation)



Common use cases of while loops

e User input validation: Prompt the user for a valid input until they give one to you!
o Think: our word-guessing game example, or Wordle!

e Game loops: Keep a game running until some condition is met
o Common examples: You run out of lives or attempts
e lterating through values
o Examples:
m Counting from0ton W
m Looping through every character in a string (via subscription notation) :*



O 00O N O Ul A WIN B

R R
N RS

def reverse(a_str: str) —> str:

"""Reverse a string"""

idx: int = @

result: str = ""

while idx < len(a_str):
result = a_str[idx] + result
idx = idx + 1

return result

print(reverse(a_str="abc"))



