CL10 — Recursion and
Positional Arguments

Reminders

Quiz 00:

e Regrade requests will be open till 11:59pm tonight!
o Please submit a regrade request if you believe your quiz was not graded correctly according to
the rubric
o Please do not ask questions about content in regrade requests. Instead, come see us in office
hours/tutoring!

Want extra support? We're here and want to help!

e Visit Office Hours (11am-5pm in SN0OQO8)!
e Visit Tutoring (5—7pm in SNO11 today)!

https://comp110-25s.github.io/support/

Recall: Signature vs Call

def sum(

S

Sum

(n 3)
Y

These are called keyword arguments, since

you are assigning values based on the
parameter names.

)

-> 1int:

Keyword arguments

def sum() -> int:

S

sum () Benefit of keyword arguments:
order doesn’t matter.

Keyword arguments

def sum() -> int:

S

sum () Benefit of keyword arguments:
order doesn’t matter.

sum ()

Positional Arguments

def sum() -> int:

S

Sum() For positional arguments, values are
assigned based on the order (position)
of the arguments.

Reviewing the memory diagram in the last lecture

1 def celebrate(winner: str) —> None:

7 print(f"Yay, {winner}!")

4

5 def get_votes(beyonce: int, kendrick: int, other: int) —> str:
6 """Find RoTY winner."""

7 if other > beyonce and other > kendrick:
8 return "Someone else!"

9 elif kendrick > beyonce:

10 return "Kendrick"

11 else:

12 return "Beyonce"
13 return "Charli"

14

15

16 celebrate(get_votes(beyonce=6000, kendrick=3000, other=4000))

On line 16, which function call uses

keyword argument(s), and which uses
positional argument(s)?

Your job: Diagram at least 2 function call frames...
But stop when you get tired or run out of lead!

def icarus(x: int) —> int:
"""Unbound aspirations!™""
print(f"Height: {x}")
return icarus(x=x + 1)

print(icarus(x=0))

Questions to discuss with your neighbor(s):
What seems wrong with this function?

How might you prevent it?

N O U B W IN -

def icarus(x: int) —> int:
"""Unbound aspirations!"""
print(f"Height: {x}")
return icarus(x=x + 1)

print(icarus(x=0))

Stack Overflow and Recursion Errors

When a programmer writes a function that calls itself indefinitely (infinitely), the
function call stack will overflow...
This leads to a Stack Overflow or Recursion Error:

RecursionError: maximum recursion depth exceeded while
calling a Python object

Base Cases and Recursive Cases

The key to writing recursive functions that are non-infinite!

To avoid StackOverflow Errors and infinite recursion:

1. You must have at least one base case
a. Base case: a branch in a recursively defined function that does not recur

2. Recursive cases must change the arguments of recursive calls such that
they make progress toward a base case

Trace the following program in a diagram:

1 def icarus(x: int) —> int:

P """Unbound aspirations!"""
3 print(f"Height: {x}")

4 return icarus(x=x + 1)

5

6 def safe_icarus(x: int) —> int:
7 ""“"Bound aspirations!"""

8 IS == =

9 return 1

10 else:

11 return 1 + safe_icarus(x=x + 1)
i

13 print(safe_icarus(x=0))

When developing a recursive function:

Base case:

A Does the function have a clear base case?
Ensure the base case returns a result directly (without calling the function again).

[Will the base case always be reached?

Recursive case:

A Ensure the function moves closer to the base case with each recursive call.

A Combine returned results from recursive calls where necessary.

A Test the function with edge cases (e.g., empty inputs, smallest and largest valid
inputs, etc.). Does the function account for these cases?

