
CL10 – Recursion and 
Positional Arguments



Reminders

Quiz 00:

● Regrade requests will be open till 11:59pm tonight! 
○ Please submit a regrade request if you believe your quiz was not graded correctly according to 

the rubric
○ Please do not ask questions about content in regrade requests. Instead, come see us in office 

hours/tutoring!

Want extra support? We’re here and want to help!

● Visit Office Hours (11am–5pm in SN008)!
● Visit Tutoring (5–7pm in SN011 today)!

https://comp110-25s.github.io/support/


def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Recall: Signature vs Call

These are called keyword arguments, since 
you are assigning values based on the 
parameter names.



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

Keyword arguments

Benefit of keyword arguments: 
order doesn’t matter.



def sum(num1: int, num2: int) -> int:

sum(num1 = 11, num2 = 3)

sum(num2 = 3, num1 = 11)

Keyword arguments

Benefit of keyword arguments: 
order doesn’t matter.



def sum(num1: int, num2: int) -> int:

sum(11, 3)

Positional Arguments

For positional arguments, values are 
assigned based on the order (position) 
of the arguments. 



Reviewing the memory diagram in the last lecture

On line 16, which function call uses 
keyword argument(s), and which uses 

positional argument(s)? 



Your job: Diagram at least 2 function call frames…

Questions to discuss with your neighbor(s):

What seems wrong with this function?

How might you prevent it?

But stop when you get tired or run out of lead!





Stack Overflow and Recursion Errors

When a programmer writes a function that calls itself indefinitely (infinitely), the 
function call stack will overflow…

This leads to a Stack Overflow or Recursion Error:

RecursionError: maximum recursion depth exceeded while 
calling a Python object



Base Cases and Recursive Cases

To avoid StackOverflow Errors and infinite recursion:

1. You must have at least one base case
a. Base case: a branch in a recursively defined function that does not recur

2. Recursive cases must change the arguments of recursive calls such that 
they make progress toward a base case

The key to writing recursive functions that are non-infinite!



Trace the following program in a diagram:



When developing a recursive function:

Base case: 

❏ Does the function have a clear base case?
❏ Ensure the base case returns a result directly (without calling the function again).

❏ Will the base case always be reached?

Recursive case:

❏ Ensure the function moves closer to the base case with each recursive call.
❏ Combine returned results from recursive calls where necessary.
❏ Test the function with edge cases (e.g., empty inputs, smallest and largest valid 

inputs, etc.). Does the function account for these cases?


