
CL04:
Functions and Memory Diagrams



Announcements
● Reminder: Martin Luther King Jr. Day on Monday

○ No class on Monday
○ Office Hours and Tutoring canceled on Sunday and Monday

● Quiz 00 on Friday, January 24th
○ Ways to prepare: 

■ Quiz expectations on course site
■ (Long) practice quiz and associated key
■ Office Hours, Tutoring, and review session next week (time 

TBA today)!
● EX01 – Tea Party Planner – released today, due January 28th

■ Recommendation: Complete parts 0-3 as quiz practice!
● Submit to the autograder to confirm correctness

https://comp110-25s.github.io/resources/quiz-expectations.html
https://comp110-25s.github.io/static/practice/comp110-s25-qz00-practice.pdf
https://comp110-25s.github.io/static/practice/comp110-s25-qz00-practice-key.pdf


Warm-up: write down at least one line number for each:

1. Docstring
2. Function call(s)
3. Return statement
4. Function definition
5. Use of a parameter’s name in an expression



The return statement vs. calls to print

● The return statement is for your computer to send a result back to the 
function call’s “bookmark” within your program

○ A bookmark is dropped when you call a function with a return type. When that function’s body 
reaches a return statement, the returned value replaces the function call and the program 
continues on

● Printing is for humans to see. To share some data with the user of the 
program, you must output it in some way

● If you have a function, my_func, that returns some value, you can print the 
value it returns by: 
1. Printing its return value directly with print(my_func()) or
2. (Later in the course) by storing the returned value in a variable and later 

printing the variable



Tracing programs by hand: Intro to memory diagrams!

● Working through the evaluation of a program depends on many interrelated 
values

● As any non-trivial program is evaluated, what needs to be kept track of includes:
1. The current line of code, or expression within a line, being evaluated
2. The trail of function calls that led to the current line and “frame of execution”
3. The names of parameters/variables and a map of the values they are 

bound to
4. More!

● As humans, this quickly becomes more information than we can mentally keep 
track of.

○ Good news: Memory diagrams will help you keep track of it all on paper!



Memory diagrams

● A program’s runtime environment is the mapping of names in your program to 
their locations in memory

● A program’s state is made up of the values stored in those locations

● You can use memory diagrams to visually keep track of both the environment 
and its state

● Memory diagrams will help you keep track of how function calls are processed.

○ Where was the function called?

○ What was the return value, and where was it returned to?

○ (and more!)







CQ00: Submitting the memory diagram to Gradescope

From your phone: 

1. Open the CQ00 assignment and make a submission
2. Upload a photo of your memory diagram
3. Complete your submission (and please make sure your photo is in the right 

orientation!)


