CLO3: Intro to Functions

Announcements
e EXOO deadline has been extended to tomorrow at 11:59pm! Please visit
Office Hours (Sitterson Hall (SN) 008) for help!

= The CSXL website is ready for you! Log in to see our hours, or submit
a ticket for help if you're in Sitterson Hall

e Today's tutoring (longer-form help) moved to Fred Brooks 141 from 6-7pm

= Wednesday's typical hours are from 5-7pm in SN 011

DEPARTMENT OF COMPUTER SCIENCE SITTERSONHALL | BROOKS BUILDING
LEVEL 1 (SNROOMPREFIX) ! (FB ROOM PREFIX)

3]
-_ &L = E 7
MEN'S|| MEN'S — ol
T ! I | | 131 | 133 .8 || 103 15
o] e 120 121 TNL2E 125 | 126 | 127 | 129 o :
[T B == = e
| w ves
135
128 130 I

-
1
—
=
==

=
L

https://csxl.unc.edu/welcome

Functions by Intuition

Consider the following function definition (a new concept!):

eoe0
1 def celsius to fahrenheit(degrees: int) -> float:
2 """Convert degrees Celsius to degrees Fahrenheit."""

3 return (degrees * 9 / 5) + 32

Now, consider the following function call expressions, which use the definition:

1 celsius to fahrenheit(degrees=0)

2
3 celsius to fahrenheit(degrees=10)

What value and type does each function call expression evaluate to? How many
connections between the definition and the call can you identify intuitively?

The fundamental pattern of functions

celsius_to fahrenheit

degrees:

Input o

output

1 celsius to fahrenheit(degrees=10)

l

50.0

Function definitions are like recipes

e A recipe in a book does not result in a meal until you cook it

e A function definition in your program does not result in a value
until you call it

o An adaptable recipe is one where you can substitute ingredients,
follow the same steps, and get different, but intentional, results

o A parameterized function definition is one where you can
substitute input arguments, follow the same steps, and get
different, but intentional, results.

= Such as converting Celsius degree values to Fahrenheit!

» Recipes and function definitions are written down once with
dreams of being cooked (called) tens, hundreds, thousands, ...
billions of times over!

The anatomy of a function definition

with this which will return
a function parameter list a value of this
define... named this... of "inputs" return type

name of function(parameter: type) -> returnType:

"""Docstring description of the function."""
return expression of type returnType

function signature specifies how you and others will make use of
the function from elsewhere in a program
e What is its name?
e What input parameter(s) type(s) does it need?
= (Think: ingredients)
e What type of return value will calling it result in?
= (Think: meal)

The anatomy of a function definition

with this which will return
a function parameter list a value of this
define... named this... of "inputs" return type

/ l l /

name of function(parameter: type) -> returnType:

"""Docstring description of the function."""
return expression of type returnType

specifies the subprogram, or set of steps, which will be
carried out every time a function calls the definition:

Each statement in the body is indented by (at least) one level

The Docstring describes the purpose and, often, usage of a function for people

The function body contains one or more statements. For now, our definitions will be simple,
one-statement functions

Return statements are special and written inside of function definitions

= When a function definition is called, a return statement indicates, "stop following this
function here and send my caller the result of evaluating this return expression!"

The anatomy of a function definition

with this which will return
a function parameter list a value of this
define... named this... of "inputs” return type
() => returnType:

Docstring description of the function.

The anatomy of a function call

function name argument list (a list of the input values
l l for the parameters)

name of function(argument=value)

Fill in the blank to complete the missing expression

Say you want to hang string lights around your dorm room. How
long of a strand of string lights will you need?

1 def perimeter(length: float, width: float) -> float:
2 """Calculate the perimeter of a rectangle."""
3 return

This is an example function call expression that calls the perimeter
function definition above. What value and type will this expression
evaluate to?

1 perimeter(length=10.0, width=8.0)

