
CL02: Expressions

Announcements

● Office Hours available Monday–Friday this week (11am-5pm)

● EX00 – Hello, World! – due Wednesday at 11:59pm

● Today: Paper + pencil / tablet + pencil

Last Lecture

● Data Types
○ float (decimal, e.g. 2.0)
○ int (whole number, e.g. 2)
○ str (string of characters, e.g. “Hello”)
○ bool (evaluates to True or False, e.g, True)

● Check type
○ type()

● Change type
○ str(), float(), int()

Review from Friday: Data Types

Discuss these questions with your neighbor and jot the answers down.

1. What is the difference between int and float?

2. Is there a difference between the following? What type of literal is each
an example of?
a. “True”
b. True
c. TRUE

3. What role do types play for data in Python?

Review from Friday: str is a Sequence Type

Discuss these questions with your neighbor and jot the answers down.
1. What does the len() function evaluate to when applied to a str value? What

will the expression len(“cold”) evaluate to?

2. Is there a difference between “True” and ‘True’? What type of literal is
each an example of?

3. What are the square brackets called in the following expression? What does
the following expression evaluate to? “The Bear”[4]

4. Can a string be a number in Python? Explain.

Expressions

● Fundamental building block in programs
● 2 main ideas behind expressions:

○ An expression evaluates to a typed value at runtime
○ An object’s type tells you what you can do with it

An expression is an intent to do something
● Computer evaluates each expression in your program one step at a time
● Examples

○ 1 + 2 * 3
○ 1
○ 1.0 * 2.0
○ “Hello” + “ World!”
○ 1 > 3

Numerical Operators
Symbol Operator Name Example

** Exponentiation 2 ** 8 equivalent to 28

* Multiplication 10 * 3

/ Division 7 / 5 result is 1.4

// Integer Division 7 // 5 result is 1

% Remainder “modulo” 7 % 5 result is 2

+ Addition 1 + 1

- Subtraction 111 - 1

- Negation -(1 + 1) result is -2

Order Of Operations

● P ()
● E **
● MD * / %
● AS + -
● Tie? Evaluate Left to Right

Addition +
● If numerical objects, add the values together

○ 1 + 1 “evaluates to” 2
○ 1.0 + 2.0 → 3.0
○ 1 + 2.0 → 3.0

● If strings, concatenate them
○ “Comp” + “110” → “Comp110”

● The result type depends on the operands
○ float + float → float
○ int + int → int
○ float + int → float
○ int + float → float
○ str + str → str

● If numerical objects, add the values together
○ 1 + 1 → 2
○ 1.0 + 2.0 → 3.0
○ 1 + 2.0 → 3.0

● If strings, concatenate them
○ “Comp” + “110” → “Comp110”

● The result type depends on the operands
○ float + float → float
○ int + int → int
○ float + int → float
○ int + float → float
○ str + str → str

Question: What happens when you try to add incompatible types?

Addition +

Subtraction/Negation -

● Meant strictly for numerical types
○ 3 - 2 → 1
○ 4.0 - 2.0 → 2.0
○ 4.0 - 2 → 2.0
○ - (1 + 1) → -2

● The result type depends on the operands
○ float - float → float
○ int - int → int
○ float - int → float
○ int - float → float

Multiplication *

● If numerical objects, multiply the values
○ 1 * 1 → 1
○ 1.0 * 2.0 → 2.0
○ 1.0 * 2 → 2.0

● If string and int, repeat the string int’s number of times
○ “Hello” * 3 → “HelloHelloHello”

● The result type depends on the operands
○ float * float → float
○ int * int → int
○ float * int → float
○ int * float → float
○ str * int → str

Question: What happens when you try str * float?

Division /

● Meant strictly for numerical types
○ 3 / 2 → 1.5
○ 4.0 / 2.0 → 2.0
○ 4 / 2 → 2.0

● Division results in a float
○ float / float → float
○ int / int → float
○ float / int → float
○ int / float → float

● For integer division // , the result type depends on the operands
○ int // int → int
○ float // float → float
○ float // int → float
○ int // float → float

Remainder “modulo”

● Calculates the remainder when you divide two numbers
● Meant strictly for numerical types

○ 5 % 2 → 1
○ 6 % 3 → 0

● The result type depends on the operands
○ int % int → int
○ float % float → float
○ float % int → float
○ int % float → float

● Note:
○ If x is even, x % 2 → 0
○ If x is odd, x % 2 → 1

Exponentiation **

● Meant strictly for numerical types
○ 2 ** 2 → 4
○ 2.0 ** 2.0 → 4.0

● The result type depends on the operands
○ float ** float → float
○ int ** int → int
○ float ** int → float
○ int ** float → float

Order Of Operations

● P ()
● E **
● MD * / %
● AS + -
● Tie? Evaluate Left to Right

● Always result in a bool (True or False) value
● Equals (==) and Not Equal (!=)

○ ! is commonly used in programming languages to represent the word “not”
○ Can be used for all primitive types we’ve learned so far! (bool, int, float, str)

● Greater than (>), at least (>=), less than (<), at most (<=)
○ Just use on floats and ints
○ (Can technically use on all primitive types, but it might not evaluate in ways

you’d expect!)

Relational Operators

Relational Operators

Operator Symbol Verbalization True Ex. False Ex.

== Is equal to? 1 == 1 1 == 2

!= Is NOT equal to? 1 != 2 1 != 1

> Is greater than? 1 > 0 0 > 1

>= Is at least? 1 >= 0 or 1 >= 1 0 >= 1

< Is less than? 0 < 1 1 < 0

<= Is at most? 0 <= 1 or 1 <= 1 1 <= 0

Practice: Operators and Expressions

Discuss these questions with your neighbor and jot the answers down.
1. What is the result of evaluating 10 % 3? What about 10 // 3? 10 ** 3?

2. Is there an error in the expression, “CAMP” + 110? If so, how would you fix
it such that the + symbol is evaluated to be concatenation?

3. What is the evaluation of the expression 10 / 4? What types are the
operands (10 and 4), what type does the expression evaluate to?

4. What is the evaluation of the expression 2 - 6 / 3 + 4 * 5?

Practice! Simplify and Type

● 2 + 4 / 2 * 2

● 220 >= int((“1” + “1” + “0”) * 2)

Simplify: 2 + 4 / 2 * 2
(Reminder: P E M D A S)

Simplify: 2 + 4 / 2 * 2

What type is 2 + 4 / 2 * 2?

Simplify:
220 >= int((“1” + “1” + “0”) * 2)

Mods Practice! Simplify

● 7 % 2

● 8 % 4

● 7 % 4

● Any even number % 2

● Any odd number % 2

