
Quiz 04 - Practice

COMP 110: Introduction to Programming
Spring 2025

April 7, 2025

Name:

9-digit PID:



Question 1: Multiple Choice Answer the following questions about concepts covered in class.

1.1. All instances of a class have the same at-
tribute values.

⃝ True
⃝ False

1.2. An object’s attribute values cannot be ac-
cessed from outside the class.

⃝ True
⃝ False

1.3. What is the difference between a class and
an object?

⃝ A class is a collection of objects
⃝ A class is a blueprint; an ob-

ject is a specific instance of that
blueprint

⃝ They are the same in Python
⃝ An object can contain classes,

but not the other way around

1.4. Because class definitions have attributes,
local variables are not allowed inside
method definitions.

⃝ True
⃝ False

1.5. What does it mean to "instantiate" a
class?

⃝ Define the class
⃝ Import a module
⃝ Create an object from a class
⃝ Define attributes

1.6. What is the purpose of the __str__ magic
method in Python?

⃝ To convert an object to a str
data type.

⃝ To define how an object should
be represented as a string
when using str(<object>) or
print(<object>).

⃝ To print a string’s location (“ad-
dress”) in a computer’s memory.

⃝ To prevent an error from occur-
ring when printing an object.

1.7. The constructor of a class is only called
once in a program, no matter how many
objects of that class are constructed.

⃝ True
⃝ False

1.8. The first parameter of any method is
and it is given a reference to the

object the method was called on.
⃝ me
⃝ self
⃝ init
⃝ this

1.9. An instance of a class is stored in the:
⃝ stack
⃝ heap
⃝ output

1.10. Why is the type of the next attribute in
a Node class typically defined as Node |
None?

⃝ It ensures the next attribute al-
ways has a valid Node instance.

⃝ It allows the next attribute to
represent the end of a linked list
by being assigned None.

⃝ Python requires all attributes to
be initialized to None by default.

⃝ It tells the computer to raise
an error if the next attribute
is None.

1.11. What happens if a recursive function does
not have a base case?

⃝ The program compiles but never
runs.

⃝ The function stops automatically
after 1,000,000 iterations.

⃝ The function converts to an iter-
ative process.

⃝ The function enters infinite re-
cursion and raises a Recursion-
Error.

Page 1



Question 2: Identifying Elements of a Python Class Consider the following class definition.

1 class Point:
2 x: float
3 y: float
4
5 def __init__(self , x: float , y: float):
6 self.x = x
7 self.y = y
8
9 def flip(self) -> None:

10 temp: float = self.x
11 self.x = self.y
12 self.y = temp
13
14 def shift_y(self , dy: float) -> None:
15 self.y += dy
16
17 def diff(self) -> float:
18 return self.x - self.y

Bubble in all lines on which any of the concepts below are found. Bubble N/A if the concept is not in
the code listing.

2.1. Constructor Declaration
□ 1 □ 2 □ 5 □ 9 □ 11

2.2. Attribute Declaration
□ 2 □ 3 □ 6 □ 7 □ 10

2.3. Attribute Initialization
□ 2 □ 3 □ 6 □ 7 □ 10

2.4. Method Declaration
□ 1 □ 9 □ 10 □ 14 □ 17

2.5. Local Variable Declaration
□ 2 □ 3 □ 6 □ 7 □ 10

2.6. Instantiation
□ 1 □ 5 □ 9 □ 10 □ N/A

Question 3: Using Classes Given the code listing above, use the Point class in the next questions.

3.1. Write a line of code to create an explicitly typed instance of the Point class called my_point
with an x of 3.7 and y of 2.3.

3.2. Write a magic method that would cause print(my_point) to print (3.7, 2.3), or the attribute
values for any other Point object. In other words, the literal values 3.7 and 2.3 should not be
written anywhere in your method definition; instead, use the attribute names to access their val-
ues. Assume this method would be added inside the Point class (no need to rewrite any of the
class).

Page 2



3.3. Write a line of code to change the value of the my_point variable’s x attribute to 2.0.

3.4. Write a line of code to cause the my_point variable’s y attribute to increase by 1.0 using a
method call.

3.5. Write a line of code to declare an explicitly typed variable named x. Initialize x to the result of
calling the diff method on my_point.

Question 4: Traversing a Linked List Print the output of the function calls below. Write “Error" if
code would result in an error.

1 from __future__ import annotations
2
3 class Node:
4 value: int
5 next: Node | None
6
7 def __init__(self , value: int , next: Node | None):
8 self.value = value
9 self.next = next

10
11 def __str__(self) -> str:
12 rest: str
13 if self.next is None:
14 rest = "None"
15 else:
16 rest = str(self.next)
17 return f"{self.value} -> {rest}"
18
19 sun: Node = Node(4, None)
20 moon: Node = Node(7, sun)

4.1. Print the output.

1 print(moon)

4.2. Print the output.

1 print(sun.value)

4.3. Print the output.

1 print(moon.next)

4.4. Print the output.

1 print(moon.next.next)

Page 3



Question 5: Memory Diagram Trace a memory diagram of the code listing.

1 class Dog:
2 name: str
3 age: int
4
5 def __init__(self , n: str , a:int):
6 self.name = n
7 self.age = a
8
9 def speak(self) -> None:

10 print(self.name + " says woof!")
11
12 def birthday(self) -> int:
13 self.age += 1
14 return self.age
15
16 class Cat:
17 name: str
18 age: int
19
20 def __init__(self , n: str , a:int):
21 self.name = n
22 self.age = a
23
24 def speak(self) -> None:
25 print(self.name + " says meow!")
26
27 def birthday(self) -> int:
28 self.age += 1
29 return self.age
30
31 rory: Dog = Dog(n = "Rory", a = 4)
32 print(rory.birthday ())
33 miso: Cat = Cat("Miso", 2)
34 miso.speak ()

Output

Stack
Globals

Heap

Page 4



Question 6: Memory Diagram Trace a memory diagram of the code listing.

1 class Concert:
2 artist: str
3 seats: dict[str , bool]
4
5 def __init__(self , a: str , s: dict[str , bool]):
6 self.artist = a
7 self.seats = s
8
9 def assign_seats(self , wanted_seats: list[str], name: str) -> None:

10 for seat in wanted_seats:
11 if seat in self.seats:
12 available: bool = self.seats[seat]
13 if available:
14 print(f"{name} bought seat {seat} to see {self.artist }!")
15 self.seats[seat] = False
16 else:
17 print(f"Seat {seat} is unavailable :(")
18
19 lenovo_seats: dict[str , bool] = {"K1": True , "K2": True , "K3": False}
20 show: Concert = Concert(a = "Travisty", s = lenovo_seats)
21 show.assign_seats(wanted_seats = ["K2", "K3"], name = "Kay")

Output

Stack
Globals

Heap

Page 5



Question 7: Class Definition Writing Write a class definition with the following attributes and methods:

• The class name is BankAccount, and it has two attributes: name, a str, and balance, a float.
• The initializer (also called a constructor) has parameters to initialize the name and balance of an

instance of BankAccount.
• The BankAccount class has a method called deposit that adds a specified amount into the balance at-

tribute of the BankAccount object the method is called on.
• The BankAccount class has a method called withdraw that will subtract a specified amount from the
balance attribute of the BankAccount object the method is called on if the balance is at least the
amount to withdraw. If the balance IS at least the amount to withdraw, return the remaining balance
after withdrawal. If the balance is NOT greater than the amount to withdraw, the code should print
“Insufficient funds” and return a value of -1.0.

• Explicitly type variables, parameters, and return types.

The following REPL examples demonstrate expected functionality of an instance of your BankAccount class:

1 >>> my_account = BankAccount("Prati", 30.0)
2 >>> my_account.deposit (10.0)
3 >>> print(my_account.balance)
4 40.0
5 >>> print(my_account.withdraw (5.0))
6 35.0
7 >>> print(my_account.withdraw (1000.0))
8 Insufficient funds
9 -1.0

7.1. Write your function definition here:

Congratulations on prepping for your last COMP 110 quiz!

Page 6


